Wednesday, November 30, 2016

Milky Way over Shipwreck


What happened to this ship? It was carried aground by a giant storm that struck the coast of Argentina in 2002. The pictured abandoned boat, dubbed Naufragio del Chubasco, wrecked near the nearly abandoned town of Cabo Raso (population: 1). The rusting ship provides a picturesque but perhaps creepy foreground for the beautiful sky above. This sky is crowned by the grand arch of our Milky Way and features galaxies including the Large and Small Magellanic Clouds, stars including Canopus and Altair, planets including Mars and Neptune, and nebulas including the Lagoon, Carina, and the Coal Sack. The mosaic was composed from over 80 images taken in early September. A 360-degree interactive panoramic version of this image is also available. The adventurous astrophotographer reports that the creepiest part of taking this picture was not the abandoned ship, but the unusual prevalence of black and hairy caterpillars. via NASA http://ift.tt/2gJKk0t

Tuesday, November 29, 2016

W5: The Soul of Star Formation


Where do stars form? Many times, stars form in energetic regions where gas and dark dust are pushed around in chaotic mayhem. Pictured, bright massive stars near the center of W5, the Soul Nebula, are exploding and emitting ionizing light and energetic winds. The outward-moving light and gas push away and evaporate much surrounding gas and dust, but leave pillars of gas behind dense protective knots. Inside these knots, though, stars also form. The featured image highlights the inner sanctum of W5, an arena spanning about 1,000 light years that is rich in star forming pillars. The Soul Nebula, also cataloged as IC 1848, lies about 6,500 light years away toward the constellation of the Queen of Aethopia (Cassiopeia). Likely, in few hundred million years, only a cluster of the resulting stars will remain. Then, these stars will drift apart. via NASA http://ift.tt/2fxUBRk

Monday, November 28, 2016

Arp 240: A Bridge between Spiral Galaxies from Hubble


Why is there a bridge between these two spiral galaxies? Made of gas and stars, the bridge provides strong evidence that these two immense star systems have passed close to each other and experienced violent tides induced by mutual gravity. Known together as Arp 240 but individually as NGC 5257 and NGC 5258, computer modelling and the ages of star clusters indicate that the two galaxies completed a first passage near each other only about 250 million years ago. Gravitational tides not only pulled away matter, they compress gas and so caused star formation in both galaxies and the unusual bridge. Galactic mergers are thought to be common, with Arp 240 representing a snapshot of a brief stage in this inevitable process. The Arp 240 pair are about 300 million light-years distant and can be seen with a small telescope toward the constellation of Virgo. Repeated close passages should ultimately result in a merger and with the emergence of a single combined galaxy. via NASA http://ift.tt/2gyc9wh

Sunday, November 27, 2016

Verona Rupes: Tallest Known Cliff in the Solar System


Could you survive a jump off the tallest cliff in the Solar System? Quite possibly. Verona Rupes on Uranus' moon Miranda is estimated to be 20 kilometers deep -- ten times the depth of the Earth's Grand Canyon. Given Miranda's low gravity, it would take about 12 minutes for a thrill-seeking adventurer to fall from the top, reaching the bottom at the speed of a racecar -- about 200 kilometers per hour. Even so, the fall might be survivable given proper airbag protection. The featured image of Verona Rupes was captured by the passing Voyager 2 robotic spacecraft in 1986. How the giant cliff was created remains unknown, but is possibly related to a large impact or tectonic surface motion. via NASA http://ift.tt/2fnUdoD

Friday, November 25, 2016

Apollo 17 VIP Site Anaglyph


Get out your red/blue glasses and check out this stereo scene from Taurus-Littrow valley on the Moon! The color anaglyph features a detailed 3D view of Apollo 17's Lunar Rover in the foreground -- behind it lies the Lunar Module and distant lunar hills. Because the world was going to be able to watch the Lunar Module's ascent stage liftoff via the rover's TV camera, this parking place was also known as the VIP Site. In December of 1972, Apollo 17 astronauts Eugene Cernan and Harrison Schmitt spent about 75 hours on the Moon, while colleague Ronald Evans orbited overhead. The crew returned with 110 kilograms of rock and soil samples, more than from any of the other lunar landing sites. Cernan and Schmitt are still the last to walk (or drive) on the Moon. via NASA http://ift.tt/2fyv60M

Thursday, November 24, 2016

Ring Scan


Scroll right and you can cruise along the icy rings of Saturn. This high resolution scan is a mosaic of images presented in natural color. The images were recorded in May 2007 over about 2.5 hours as the Cassini spacecraft passed above the unlit side of the rings. To help track your progress, major rings and gaps are labeled along with the distance from the center of the gas giant in kilometers. The alphabetical designation of Saturn's rings is historically based on their order of discovery; rings A and B are the bright rings separated by the Cassini division. In order of increasing distance from Saturn, the seven main rings run D,C,B,A,F,G,E. (Faint, outer rings G and E are not imaged here.) Four days from now, on November 29, Cassini will make a close flyby of Saturn's moon Titan and use the large moon's gravity to nudge the spacecraft into a series of 20 daring, elliptical, ring-grazing orbits. Diving through the ring plane just 11,000 kilometers outside the F ring (far right) Cassini's first ring-graze will be on December 4. via NASA http://ift.tt/2fbgea1

Tuesday, November 22, 2016

Plutos Sputnik Planum


Is there an ocean below Sputnik Planum on Pluto? The unusually smooth 1000-km wide golden expanse, visible in the featured image from New Horizons, appears segmented into convection cells. But how was this region created? One hypothesis now holds the answer to be a great impact that stirred up an underground ocean of salt water roughly 100-kilometers thick. The featured image of Sputnik Planum, part of the larger heart-shaped Tombaugh Regio, was taken last July and shows true details in exaggerated colors. Although the robotic New Horizons spacecraft is off on a new adventure, continued computer-modeling of this surprising surface feature on Pluto is likely to lead to more refined speculations about what lies beneath. via NASA http://ift.tt/2ghUTco

Monday, November 21, 2016

Nova over Thailand


A nova in Sagittarius is bright enough to see with binoculars. Detected last month, the stellar explosion even approached the limit of naked-eye visibility last week. A classical nova results from a thermonuclear explosion on the surface of a white dwarf star -- a dense star having the size of our Earth but the mass of our Sun. In the featured image, the nova was captured last week above ancient Wat Mahathat in Sukhothai, Thailand. To see Nova Sagittarius 2016 yourself, just go out just after sunset and locate near the western horizon the constellation of the Archer (Sagittarius), popularly identified with an iconic teapot. Also visible near the nova is the very bright planet Venus. Don’t delay, though, because not only is the nova fading, but that part of the sky is setting continually closer to sunset. via NASA http://ift.tt/2gBQ3dz

Sunday, November 20, 2016

NGC 4414: A Flocculent Spiral Galaxy


How much mass do flocculent spirals hide? The featured true color image of flocculent spiral galaxy NGC 4414 was taken with the Hubble Space Telescope to help answer this question. The featured image was augmented with data from the Sloan Digital Sky Survey (SDSS). Flocculent spirals -- galaxies without well-defined spiral arms -- are a quite common form of galaxy, and NGC 4414 is one of the closest. Stars and gas near the visible edge of spiral galaxies orbit the center so fast that the gravity from a large amount of unseen dark matter must be present to hold them together. Understanding the matter and dark matter distribution of NGC 4414 helps humanity calibrate the rest of the galaxy and, by deduction, flocculent spirals in general. Further, calibrating the distance to NGC 4414 helps humanity calibrate the cosmological distance scale of the entire visible universe. via NASA http://ift.tt/2gsbMns

Friday, November 18, 2016

Philadelphia Perigee Full Moon


A supermoon sets over the metropolis of Philadelphia in this twilight snapshot captured on November 14 at 6:21am Eastern Standard Time. Within hours of the Moon's exact full phase, that time does correspond to a lunar perigee or the closest point in the Moon's elliptical orbit around our fair planet. Slightly bigger and brighter at perigee, this Full Moon is still flattened and distorted in appearance by refraction in atmospheric layers along the sight-line near the horizon. Also like more ordinary Full Moons, it shines with the warm color of sunlight. Joined by buildings along the Philadelphia skyline, the perigee full moonlight is reflected in the waters of the mighty Cooper River. via NASA http://ift.tt/2f7q2wQ

Sunday, November 13, 2016

Super Moon vs Micro Moon


What is so super about tomorrow's supermoon? Tomorrow, a full moon will occur that appears slightly larger and brighter than usual. The reason is that the Moon's fully illuminated phase occurs within a short time from perigee - when the Moon is its closest to the Earth in its elliptical orbit. Although the precise conditions that define a supermoon vary, tomorrow's supermoon will undoubtedly qualify because it will be the closest, largest, and brightest full moon in over 65 years. One reason supermoons are popular is because they are so easy to see -- just go outside at sunset and watch an impressive full moon rise! Since perigee actually occurs tomorrow morning, tonight's full moon, visible starting at sunset, should also be impressive. Pictured here, a supermoon from 2012 is compared to a micromoon -- when a full Moon occurs near the furthest part of the Moon's orbit -- so that it appears smaller and dimmer than usual. Given many definitions, at least one supermoon occurs each year, with another one coming next month (moon-th). However, a full moon will not come this close to Earth again until 2034. via NASA http://ift.tt/2fvYgeM

Friday, November 11, 2016

NGC 7822 in Cepheus


Hot, young stars and cosmic pillars of gas and dust seem to crowd into NGC 7822. At the edge of a giant molecular cloud toward the northern constellation Cepheus, the glowing star forming region lies about 3,000 light-years away. Within the nebula, bright edges and dark shapes stand out in this colorful skyscape. The image includes data from narrowband filters, mapping emission from atomic oxygen, hydrogen, and sulfur into blue, green, and red hues. The emission line and color combination has become well-known as the Hubble palette. The atomic emission is powered by energetic radiation from the central hot stars. Their powerful winds and radiation sculpt and erode the denser pillar shapes and clear out a characteristic cavity light-years across the center of the natal cloud. Stars could still be forming inside the pillars by gravitational collapse but as the pillars are eroded away, any forming stars will ultimately be cutoff from their reservoir of star stuff. This field of view spans over 40 light-years at the estimated distance of NGC 7822. via NASA http://ift.tt/2fqqCap

Tuesday, November 8, 2016

The Cosmic Web of the Tarantula Nebula


It is the largest and most complex star forming region in the entire galactic neighborhood. Located in the Large Magellanic Cloud, a small satellite galaxy orbiting our Milky Way galaxy, the region's spidery appearance is responsible for its popular name, the Tarantula nebula. This tarantula, however, is about 1,000 light-years across. Were it placed at the distance of Milky Way's Orion Nebula, only 1,500 light-years distant and the nearest stellar nursery to Earth, it would appear to cover about 30 degrees (60 full moons) on the sky. Intriguing details of the nebula are visible in the featured image shown in colors emitted predominantly by hydrogen and oxygen. The spindly arms of the Tarantula nebula surround NGC 2070, a star cluster that contains some of the brightest, most massive stars known, visible in blue in the image center. Since massive stars live fast and die young, it is not so surprising that the cosmic Tarantula also lies near the site of the closest recent supernova. via NASA http://ift.tt/2fz5At0

Monday, November 7, 2016

Inverted City Beneath Clouds


How could that city be upside-down? The city, Chicago, was actually perfectly right-side up. The long shadows it projected onto nearby Lake Michigan near sunset, however, when seen in reflection, made the buildings appear inverted. This fascinating, puzzling, yet beautiful image was captured by a photographer in 2014 on an airplane on approach to Chicago's O'Hare International Airport. The Sun can be seen both above and below the cloud deck, with the latter reflected in the calm lake. As a bonus, if you look really closely -- and this is quite a challenge -- you can find another airplane in the image, likely also on approach to the same airport. via NASA http://ift.tt/2frZ98z

Sunday, November 6, 2016

Starburst Cluster in NGC 3603


A mere 20,000 light-years from the Sun lies NGC 3603, a resident of the nearby Carina spiral arm of our Milky Way Galaxy. NGC 3603 is well known to astronomers as one of the Milky Way's largest star-forming regions. The central open star cluster contains thousands of stars more massive than our Sun, stars that likely formed only one or two million years ago in a single burst of star formation. In fact, nearby NGC 3603 is thought to contain a convenient example of the massive star clusters that populate much more distant starburst galaxies. Surrounding the cluster are natal clouds of glowing interstellar gas and obscuring dust, sculpted by energetic stellar radiation and winds. Recorded by the Hubble Space Telescope, the image spans about 17 light-years. via NASA http://ift.tt/2erW06L